Extremal disconnectedness and ultrafilters

Ulises Ariet RAMOS-GARCÍA

joint work with Michael HRUŠÁK

Centro de Ciencias Matemáticas, UNAM ariet@matmor.unam.mx

> January 2014 Winter School, Hejnice

Contents

Arhangel'skii's problem

- 2 From ultrafilters to ED spaces
- From ED spaces to ultrafilters
- A RO(X) and Cohen reals

< 🗇 🕨 < 🖃 🕨

Definition (Stone, 1937)

A topological space is called *extremally disconnected* (or *ED* for short) if it is regular and the closure of every open set is open, or equivalently, the closures of any two disjoint open sets are disjoint.

Every ED space is zero-dimensional and Tychonoff.

- Every open (or dense) subspace of an ED space is also an ED space.
- Every discrete space is ED, but the converse is not true (e.g., $\beta\omega$).
- Every metrizable ED space is discrete.

Extremal disconnectedness can be considered as a **non-trivial generalization of discreteness**. This notion has been studied by many authors for several years.

Definition (Stone, 1937)

A topological space is called *extremally disconnected* (or *ED* for short) if it is regular and the closure of every open set is open, or equivalently, the closures of any two disjoint open sets are disjoint.

Every ED space is zero-dimensional and Tychonoff.

- Every open (or dense) subspace of an ED space is also an ED space.
- Every discrete space is ED, but the converse is not true (e.g., $\beta\omega$).
- Every metrizable ED space is discrete.

Extremal disconnectedness can be considered as a **non-trivial generalization of discreteness**. This notion has been studied by many authors for several years.

Definition (Stone, 1937)

A topological space is called *extremally disconnected* (or *ED* for short) if it is regular and the closure of every open set is open, or equivalently, the closures of any two disjoint open sets are disjoint.

• Every ED space is zero-dimensional and Tychonoff.

- Every open (or dense) subspace of an ED space is also an ED space.
- Every discrete space is ED, but the converse is not true (*e.g.*, $\beta\omega$).
- Every metrizable ED space is discrete.

Extremal disconnectedness can be considered as a **non-trivial generalization of discreteness**. This notion has been studied by many authors for several years.

Definition (Stone, 1937)

A topological space is called *extremally disconnected* (or *ED* for short) if it is regular and the closure of every open set is open, or equivalently, the closures of any two disjoint open sets are disjoint.

- Every ED space is zero-dimensional and Tychonoff.
- Every open (or dense) subspace of an ED space is also an ED space.
- Every discrete space is ED, but the converse is not true (*e.g.*, $\beta\omega$).
- Every metrizable ED space is discrete.

Extremal disconnectedness can be considered as a **non-trivial generalization of discreteness**. This notion has been studied by many authors for several years.

Definition (Stone, 1937)

A topological space is called *extremally disconnected* (or *ED* for short) if it is regular and the closure of every open set is open, or equivalently, the closures of any two disjoint open sets are disjoint.

- Every ED space is zero-dimensional and Tychonoff.
- Every open (or dense) subspace of an ED space is also an ED space.
- Every discrete space is ED, but the converse is not true (e.g., $\beta\omega$).
- Every metrizable ED space is discrete.

Extremal disconnectedness can be considered as a **non-trivial generalization of discreteness**. This notion has been studied by many authors for several years.

Definition (Stone, 1937)

A topological space is called *extremally disconnected* (or *ED* for short) if it is regular and the closure of every open set is open, or equivalently, the closures of any two disjoint open sets are disjoint.

- Every ED space is zero-dimensional and Tychonoff.
- Every open (or dense) subspace of an ED space is also an ED space.
- Every discrete space is ED, but the converse is not true (e.g., $\beta\omega$).
- Every metrizable ED space is discrete.

Extremal disconnectedness can be considered as a **non-trivial generalization of discreteness**. This notion has been studied by many authors for several years.

Definition (Stone, 1937)

A topological space is called *extremally disconnected* (or *ED* for short) if it is regular and the closure of every open set is open, or equivalently, the closures of any two disjoint open sets are disjoint.

- Every ED space is zero-dimensional and Tychonoff.
- Every open (or dense) subspace of an ED space is also an ED space.
- Every discrete space is ED, but the converse is not true (e.g., $\beta\omega$).
- Every metrizable ED space is discrete.

Extremal disconnectedness can be considered as a **non-trivial generalization of discreteness**. This notion has been studied by many authors for several years.

Definition (Stone, 1937)

A topological space is called *extremally disconnected* (or *ED* for short) if it is regular and the closure of every open set is open, or equivalently, the closures of any two disjoint open sets are disjoint.

- Every ED space is zero-dimensional and Tychonoff.
- Every open (or dense) subspace of an ED space is also an ED space.
- Every discrete space is ED, but the converse is not true (e.g., $\beta\omega$).
- Every metrizable ED space is discrete.

Extremal disconnectedness can be considered as a **non-trivial** generalization of discreteness. This notion has been studied by many authors for several years.

Definition (Stone, 1937)

A topological space is called *extremally disconnected* (or *ED* for short) if it is regular and the closure of every open set is open, or equivalently, the closures of any two disjoint open sets are disjoint.

- Every ED space is zero-dimensional and Tychonoff.
- Every open (or dense) subspace of an ED space is also an ED space.
- Every discrete space is ED, but the converse is not true (e.g., $\beta\omega$).
- Every metrizable ED space is discrete.

Extremal disconnectedness can be considered as a **non-trivial** generalization of discreteness. This notion has been studied by many authors for several years.

Arhangel'skii's problem

Problem (Arhangel'skii, 1967)

Is there a nondiscrete extremally disconnected topological group?

Contents

- From ED spaces to ultrafilters
- A RO(X) and Cohen reals

< A > < > > <

Partial positive solutions

For each one of the following assumptions, there is an example answering Arhangel'skii's question:

(Sirota, 1969/Louveau, 1972) There is a Ramsey ultrafilter on ω.
(Malykhin,1975) p = c.

Malykhin's construction was based on Hindman's Theorem (a very useful result of Ramsey theory). His construction gives an union ultrafilter. These group topologies are on the countable Boolean group ($[\omega]^{<\omega}, \Delta$). In fact, Arhangel'skii's question reduces to the Boolean case.

Theorem (Malykhin, 1975)

Any ED topological group must contain an open (and therefore closed) Boolean subgroup (i.e., a subgroup consisting of elements of order 2).

Partial positive solutions

For each one of the following assumptions, there is an example answering Arhangel'skii's question:

• (Sirota, 1969/Louveau, 1972) There is a Ramsey ultrafilter on ω .

• (Malykhin,1975) $\mathfrak{p} = \mathfrak{c}$.

Malykhin's construction was based on Hindman's Theorem (a very useful result of Ramsey theory). His construction gives an union ultrafilter. These group topologies are on the countable Boolean group ($[\omega]^{<\omega}, \Delta$). In fact, Arhangel'skii's question reduces to the Boolean case.

Theorem (Malykhin, 1975)

Any ED topological group must contain an open (and therefore closed) Boolean subgroup (i.e., a subgroup consisting of elements of order 2).

Partial positive solutions

For each one of the following assumptions, there is an example answering Arhangel'skii's question:

- (Sirota, 1969/Louveau, 1972) There is a Ramsey ultrafilter on ω .
- (Malykhin,1975) $\mathfrak{p} = \mathfrak{c}$.

Malykhin's construction was based on Hindman's Theorem (a very useful result of Ramsey theory). His construction gives an union ultrafilter. These group topologies are on the countable Boolean group ($[\omega]^{<\omega}, \Delta$). In fact, Arhangel'skii's question reduces to the Boolean case.

Theorem (Malykhin, 1975)

Any ED topological group must contain an open (and therefore closed) Boolean subgroup (i.e., a subgroup consisting of elements of order 2).

Partial positive solutions

For each one of the following assumptions, there is an example answering Arhangel'skii's question:

- (Sirota, 1969/Louveau, 1972) There is a Ramsey ultrafilter on ω .
- (Malykhin,1975) $\mathfrak{p} = \mathfrak{c}$.

Malykhin's construction was based on Hindman's Theorem (a very useful result of Ramsey theory). His construction gives an union ultrafilter. These group topologies are on the countable Boolean group ($[\omega]^{<\omega}, \Delta$). In fact, Arhangel'skii's question reduces to the Boolean case.

Theorem (Malykhin, 1975)

Any ED topological group must contain an open (and therefore closed) Boolean subgroup (i.e., a subgroup consisting of elements of order 2).

Partial positive solutions

For each one of the following assumptions, there is an example answering Arhangel'skii's question:

- (Sirota, 1969/Louveau, 1972) There is a Ramsey ultrafilter on ω .
- (Malykhin,1975) $\mathfrak{p} = \mathfrak{c}$.

Malykhin's construction was based on Hindman's Theorem (a very useful result of Ramsey theory). His construction gives an union ultrafilter. These group topologies are on the countable Boolean group ($[\omega]^{<\omega}, \Delta$). In fact, Arhangel'skii's question reduces to the Boolean case.

Theorem (Malykhin, 1975)

Any ED topological group must contain an open (and therefore closed) Boolean subgroup (i.e., a subgroup consisting of elements of order 2).

Partial positive solutions

For each one of the following assumptions, there is an example answering Arhangel'skii's question:

- (Sirota, 1969/Louveau, 1972) There is a Ramsey ultrafilter on ω .
- (Malykhin,1975) $\mathfrak{p} = \mathfrak{c}$.

Malykhin's construction was based on Hindman's Theorem (a very useful result of Ramsey theory). His construction gives an union ultrafilter.

These group topologies are on the countable Boolean group $([\omega]^{<\omega}, \Delta)$. In fact, Arhangel'skii's question reduces to the Boolean case.

Theorem (Malykhin, 1975)

Any ED topological group must contain an open (and therefore closed) Boolean subgroup (i.e., a subgroup consisting of elements of order 2).

Partial positive solutions

For each one of the following assumptions, there is an example answering Arhangel'skii's question:

- (Sirota, 1969/Louveau, 1972) There is a Ramsey ultrafilter on ω .
- (Malykhin,1975) $\mathfrak{p} = \mathfrak{c}$.

Malykhin's construction was based on Hindman's Theorem (a very useful result of Ramsey theory). His construction gives an union ultrafilter. These group topologies are on the countable Boolean group ($[\omega]^{<\omega}, \Delta$). In fact, Arhangel'skii's question reduces to the Boolean case.

Theorem (Malykhin, 1975)

Any ED topological group must contain an open (and therefore closed) Boolean subgroup (i.e., a subgroup consisting of elements of order 2).

Partial positive solutions

For each one of the following assumptions, there is an example answering Arhangel'skii's question:

- (Sirota, 1969/Louveau, 1972) There is a Ramsey ultrafilter on ω .
- (Malykhin,1975) $\mathfrak{p} = \mathfrak{c}$.

Malykhin's construction was based on Hindman's Theorem (a very useful result of Ramsey theory). His construction gives an union ultrafilter. These group topologies are on the countable Boolean group ($[\omega]^{<\omega}, \Delta$). In fact, Arhangel'skii's question reduces to the Boolean case.

Theorem (Malykhin, 1975)

Any ED topological group must contain an open (and therefore closed) Boolean subgroup (i.e., a subgroup consisting of elements of order 2).

Partial positive solutions

For each one of the following assumptions, there is an example answering Arhangel'skii's question:

- (Sirota, 1969/Louveau, 1972) There is a Ramsey ultrafilter on ω .
- (Malykhin,1975) $\mathfrak{p} = \mathfrak{c}$.

Malykhin's construction was based on Hindman's Theorem (a very useful result of Ramsey theory). His construction gives an union ultrafilter. These group topologies are on the countable Boolean group ($[\omega]^{<\omega}, \Delta$). In fact, Arhangel'skii's question reduces to the Boolean case.

Theorem (Malykhin, 1975)

Any ED topological group must contain an open (and therefore closed) Boolean subgroup (i.e., a subgroup consisting of elements of order 2).

The classical consistent example

Given a filter \mathcal{F} on ω , $\mathcal{F}^{<\omega} = \{[F]^{<\omega} \colon F \in \mathcal{F}\}$ induces a group topology $\tau_{\mathcal{F}}$ on the Boolean group $([\omega]^{<\omega}, \Delta)$ by declaring $\mathcal{F}^{<\omega}$ to be the filter of neighbourhoods of the \emptyset .

Theorem (Louveau, 1972)

The group $([\omega]^{<\omega}, \tau_{\mathcal{F}})$ is ED if and only if \mathcal{F} is a Ramsey ultrafilter.

The same construction works on a measurable cardinal, and yet another example can be obtained from Matet forcing with a union-ultrafilter.

The classical consistent example

Given a filter \mathcal{F} on ω , $\mathcal{F}^{<\omega} = \{[F]^{<\omega} : F \in \mathcal{F}\}$ induces a group topology $\tau_{\mathcal{F}}$ on the Boolean group $([\omega]^{<\omega}, \Delta)$ by declaring $\mathcal{F}^{<\omega}$ to be the filter of neighbourhoods of the \emptyset .

Theorem (Louveau, 1972) The group $([\omega]^{<\omega}, \tau_{\mathcal{F}})$ is ED if and only if \mathcal{F} is a Ramsey ultrafilter.

The same construction works on a measurable cardinal, and yet another example can be obtained from Matet forcing with a union-ultrafilter.

イロト イヨト イヨト

The classical consistent example

Given a filter \mathcal{F} on ω , $\mathcal{F}^{<\omega} = \{[F]^{<\omega} \colon F \in \mathcal{F}\}$ induces a group topology $\tau_{\mathcal{F}}$ on the Boolean group $([\omega]^{<\omega}, \Delta)$ by declaring $\mathcal{F}^{<\omega}$ to be the filter of neighbourhoods of the \emptyset .

Theorem (Louveau, 1972) The group $([\omega]^{<\omega}, \tau_{\mathcal{F}})$ is ED if and only if \mathcal{F} is a Ramsey ultrafilter.

The same construction works on a measurable cardinal, and yet another example can be obtained from Matet forcing with a union-ultrafilter.

Contents

Arhangel'skii's problem

- Prom ultrafilters to ED spaces
- 3 From ED spaces to ultrafilters
- A RO(X) and Cohen reals

< A > < > > <

Definition

Let (X, τ) be a topological space and $x \in X$. The *spectrum* of X at x, denoted by Spect(X, x), is defined as the collection of all $p \in \omega^*$ such that there is a sequence $\langle U_n : n \in \omega \rangle \subset \tau$ with $p = \{A \subset \omega : x \in \bigcup_{n \in A} U_n\}$. The *spectrum* of X is Spect $(X) = \bigcup_{x \in X} Spect(X, x)$.

Definition

Let (X, τ) be a topological space and $x \in X$. The *spectrum* of X at x, denoted by Spect(X, x), is defined as the collection of all $p \in \omega^*$ such that there is a sequence $\langle U_n : n \in \omega \rangle \subset \tau$ with $p = \{A \subset \omega : x \in \bigcup_{n \in A} U_n\}$. The *spectrum* of X is Spect $(X) = \bigcup_{x \in X} \text{Spect}(X, x)$.

0-C-Spect(X), when $\langle U_n : n \in \omega \rangle \subset CO(X)$ and is also a sequence of pairwise disjoint elements.

Definition

Let (X, τ) be a topological space and $x \in X$. The *spectrum* of X at x, denoted by Spect(X, x), is defined as the collection of all $p \in \omega^*$ such that there is a sequence $\langle U_n : n \in \omega \rangle \subset \tau$ with $p = \{A \subset \omega : x \in \bigcup_{n \in A} U_n\}$. The *spectrum* of X is Spect $(X) = \bigcup_{x \in X} Spect(X, x)$.

• 0-Spect(X), when $\langle U_n : n \in \omega \rangle \subset CO(X)$.

 0-C-Spect(X), when (U_n: n ∈ ω) ⊂ CO(X) and is also a sequence of pairwise disjoint elements.

Definition

Let (X, τ) be a topological space and $x \in X$. The *spectrum* of X at x, denoted by Spect(X, x), is defined as the collection of all $p \in \omega^*$ such that there is a sequence $\langle U_n : n \in \omega \rangle \subset \tau$ with $p = \{A \subset \omega : x \in \bigcup_{n \in A} U_n\}$. The *spectrum* of X is Spect $(X) = \bigcup_{x \in X} Spect(X, x)$.

- 0-Spect(X), when $\langle U_n : n \in \omega \rangle \subset CO(X)$.
- 0-C-Spect(X), when (U_n: n ∈ ω) ⊂ CO(X) and is also a sequence of pairwise disjoint elements.

When X is ED, Spect(X) is more than not empty.

Proposition

Let X be an ED space. Then

- 0-C-Spect(X) = 0-Spect(X) = Spect(X).
- If $\chi(X, x) < \mathfrak{d}$, then Spect $(X) \subset P$ -points.
- If $p \in \text{Spect}(X)$ and $q \leq_{RK} p$, then $q \in \text{Spect}(X)$.
- For every p, q ∈ Spect(X) there is r ∈ Spect(X) such that p, q ≤_{RK} r.

What happens when \mathbb{G} is an ED topological group?

b) 4 The b

When X is ED, Spect(X) is more than not empty.

Proposition Let X be an ED space. Then • 0-C-Spect(X) = 0-Spect(X) = Spect(X). • If $\chi(X,x) < \mathfrak{d}$, then $Spect(X) \subset P$ -points. • If $p \in Spect(X)$ and $q \leq_{RK} p$, then $q \in Spect(X)$. • For every $p, q \in Spect(X)$ there is $r \in Spect(X)$ such that $p, q \leq_{RK} r$.

What happens when \mathbb{G} is an ED topological group?

When X is ED, Spect(X) is more than not empty.

Proposition

Let X be an ED space. Then

- 0-C-Spect(X) = 0-Spect(X) = Spect(X).
- ② If $\chi(X, x) < \mathfrak{d}$, then Spect(X) ⊂ *P*-points.
- 3 If $p \in \text{Spect}(X)$ and $q \leq_{RK} p$, then $q \in \text{Spect}(X)$.
- For every $p, q \in \text{Spect}(X)$ there is $r \in \text{Spect}(X)$ such that $p, q \leq_{RK} r$.

What happens when \mathbb{G} is an ED topological group?

When X is ED, Spect(X) is more than not empty.

Proposition

Let X be an ED space. Then

- 0-C-Spect(X) = 0-Spect(X) = Spect(X).
- ② If $\chi(X, x) < \mathfrak{d}$, then Spect(X) ⊂ *P*-points.
- **③** If $p \in \text{Spect}(X)$ and $q ≤_{RK} p$, then $q \in \text{Spect}(X)$.

• For every $p, q \in \text{Spect}(X)$ there is $r \in \text{Spect}(X)$ such that $p, q \leq_{RK} r$.

What happens when \mathbb{G} is an ED topological group?

・ 同 ト ・ ヨ ト ・ ヨ ト

When X is ED, Spect(X) is more than not empty.

Proposition

Let X be an ED space. Then

•
$$0-C-Spect(X) = 0-Spect(X) = Spect(X).$$

② If $\chi(X, x) < \mathfrak{d}$, then Spect(X) ⊂ *P*-points.

- **③** If *p* ∈ Spect(*X*) and *q* ≤_{*RK*} *p*, then *q* ∈ Spect(*X*).
- For every $p, q \in \text{Spect}(X)$ there is $r \in \text{Spect}(X)$ such that $p, q \leq_{RK} r$.

What happens when G is an ED topological group?

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

When X is ED, Spect(X) is more than not empty.

Proposition

Let X be an ED space. Then

•
$$0-C-Spect(X) = 0-Spect(X) = Spect(X).$$

② If $\chi(X, x) < \mathfrak{d}$, then Spect(X) ⊂ *P*-points.

- **③** If *p* ∈ Spect(*X*) and *q* ≤_{*RK*} *p*, then *q* ∈ Spect(*X*).
- For every $p, q \in \text{Spect}(X)$ there is $r \in \text{Spect}(X)$ such that $p, q \leq_{RK} r$.

What happens when G is an ED topological group?

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Some facts about Spect(X)

When X is ED, Spect(X) is more than not empty.

Proposition

Let X be an ED space. Then

•
$$0-C-Spect(X) = 0-Spect(X) = Spect(X).$$

② If $\chi(X, x) < \mathfrak{d}$, then Spect(X) ⊂ *P*-points.

- **③** If *p* ∈ Spect(*X*) and *q* ≤_{*RK*} *p*, then *q* ∈ Spect(*X*).
- For every $p, q \in \text{Spect}(X)$ there is $r \in \text{Spect}(X)$ such that $p, q \leq_{RK} r$.

What happens when \mathbb{G} is an ED topological group?

Question

Let \mathbb{G} be an ED topological group and $p, q \in \text{Spect}(X)$. Is there $r \in \text{Spect}(X)$ such that $r \leq_{RK} p, q$?

Consistently, yes. The NCF principle implies that for every $p, q \in \omega^*$ there is $r \in \omega^*$ such that $r \leq_{RB} p, q$.

Question

What kind of ultrafilters can live in Spect(X)?

Ramsey ultrafilters, P-points, nwd-ultrafilters...but what about ED topological groups? The spectrum of the consistent examples for Arhangel'skii's question that we know contain at least one P-point.

Question

Let \mathbb{G} be an ED topological group and $p, q \in \text{Spect}(X)$. Is there $r \in \text{Spect}(X)$ such that $r \leq_{RK} p, q$?

Consistently, yes. The NCF principle implies that for every $p, q \in \omega^*$ there is $r \in \omega^*$ such that $r \leq_{RB} p, q$.

Question

What kind of ultrafilters can live in Spect(X)?

Ramsey ultrafilters, P-points, nwd-ultrafilters...but what about ED topological groups? The spectrum of the consistent examples for Arhangel'skii's question that we know contain at least one P-point.

Question

Let \mathbb{G} be an ED topological group and $p, q \in \text{Spect}(X)$. Is there $r \in \text{Spect}(X)$ such that $r \leq_{RK} p, q$?

Consistently, yes. The NCF principle implies that for every $p, q \in \omega^*$ there is $r \in \omega^*$ such that $r \leq_{RB} p, q$.

Question

What kind of ultrafilters can live in Spect(X)?

Ramsey ultrafilters, P-points, nwd-ultrafilters...but what about ED topological groups? The spectrum of the consistent examples for Arhangel'skii's question that we know contain at least one P-point.

Question

Let \mathbb{G} be an ED topological group and $p, q \in \text{Spect}(X)$. Is there $r \in \text{Spect}(X)$ such that $r \leq_{RK} p, q$?

Consistently, yes. The NCF principle implies that for every $p, q \in \omega^*$ there is $r \in \omega^*$ such that $r \leq_{RB} p, q$.

Question

What kind of ultrafilters can live in Spect(X)?

Ramsey ultrafilters, P-points, nwd-ultrafilters...but what about ED topological groups? The spectrum of the consistent examples for Arhangel'skii's question that we know contain at least one P-point.

イロト イポト イヨト イヨト

Question

Let \mathbb{G} be an ED topological group and $p, q \in \text{Spect}(X)$. Is there $r \in \text{Spect}(X)$ such that $r \leq_{RK} p, q$?

Consistently, yes. The NCF principle implies that for every $p, q \in \omega^*$ there is $r \in \omega^*$ such that $r \leq_{RB} p, q$.

Question

What kind of ultrafilters can live in Spect(X)?

Ramsey ultrafilters, P-points, nwd-ultrafilters... but what about ED topological groups? The spectrum of the consistent examples for Arhangel'skii's question that we know contain at least one P-point.

Question

Let \mathbb{G} be an ED topological group and $p, q \in \text{Spect}(X)$. Is there $r \in \text{Spect}(X)$ such that $r \leq_{RK} p, q$?

Consistently, yes. The NCF principle implies that for every $p, q \in \omega^*$ there is $r \in \omega^*$ such that $r \leq_{RB} p, q$.

Question

What kind of ultrafilters can live in Spect(X)?

Ramsey ultrafilters, P-points, nwd-ultrafilters... but what about ED topological groups? The spectrum of the consistent examples for Arhangel'skii's question that we know contain at least one P-point.

Question

Let \mathbb{G} be an ED topological group and $p, q \in \text{Spect}(X)$. Is there $r \in \text{Spect}(X)$ such that $r \leq_{RK} p, q$?

Consistently, yes. The NCF principle implies that for every $p, q \in \omega^*$ there is $r \in \omega^*$ such that $r \leq_{RB} p, q$.

Question

What kind of ultrafilters can live in Spect(X)?

Ramsey ultrafilters, P-points, nwd-ultrafilters... but what about ED topological groups? The spectrum of the consistent examples for Arhangel'skii's question that we know contain at least one P-point.

Contents

Arhangel'skii's problem

- Prom ultrafilters to ED spaces
- From ED spaces to ultrafilters
- 4 RO(X) and Cohen reals

-

< A > < 3

Not adding Cohen reals

Given a topological space X, let RO(X) be the algebra of regular open sets of X. If X is an ED space, then RO(X) = CO(X).

Proposition

Let X be an ED space. Then RO(X) does not add Cohen reals if and only if for every continuous function $f: X \to 2^{\omega}$ there exists a non-empty open set U such that $f[U] \in nwd(2^{\omega})$.

Not adding Cohen reals

Given a topological space X, let RO(X) be the algebra of regular open sets of X. If X is an ED space, then RO(X) = CO(X).

Proposition

Let X be an ED space. Then RO(X) does not add Cohen reals if and only if for every continuous function $f: X \to 2^{\omega}$ there exists a non-empty open set U such that $f[U] \in nwd(2^{\omega})$.

Not adding Cohen reals

Given a topological space X, let RO(X) be the algebra of regular open sets of X. If X is an ED space, then RO(X) = CO(X).

Proposition

Let X be an ED space. Then RO(X) does not add Cohen reals if and only if for every continuous function $f: X \to 2^{\omega}$ there exists a non-empty open set U such that $f[U] \in nwd(2^{\omega})$.

Definition (Baumgartner, 1995)

An ultrafilter p on ω is *nowhere dense* (nwd) if for any $f: \omega \to 2^{\omega}$ there is $A \in p$ such that $f[A] \in nwd(2^{\omega})$.

(Baumgartner, 1995) Every P-point is a nwd-ultrafilter.

Theorem (Błaszczyk-Shelah, 2001)

The following are equivalent.

- There is a nwd-ultrafilter on ω .
- There is a non-trivial σ-centered forcing notion which does not add Cohen reals.

Theorem (Shelah,1998)

It is consistent with ZFC that there is no nwd-ultrafilter on ω .

Definition (Baumgartner, 1995)

An ultrafilter p on ω is *nowhere dense* (nwd) if for any $f: \omega \to 2^{\omega}$ there is $A \in p$ such that $f[A] \in nwd(2^{\omega})$.

• (Baumgartner, 1995) Every P-point is a nwd-ultrafilter.

Theorem (Błaszczyk-Shelah, 2001)

The following are equivalent.

- There is a nwd-ultrafilter on ω .
- There is a non-trivial *σ*-centered forcing notion which does not add Cohen reals.

Theorem (Shelah,1998)

It is consistent with ZFC that there is no nwd-ultrafilter on ω .

Definition (Baumgartner, 1995)

An ultrafilter p on ω is *nowhere dense* (nwd) if for any $f: \omega \to 2^{\omega}$ there is $A \in p$ such that $f[A] \in nwd(2^{\omega})$.

• (Baumgartner, 1995) Every P-point is a nwd-ultrafilter.

Theorem (Błaszczyk-Shelah, 2001)

The following are equivalent.

- There is a nwd-ultrafilter on ω .
- There is a non-trivial *σ*-centered forcing notion which does not add Cohen reals.

Theorem (Shelah,1998)

It is consistent with ZFC that there is no nwd-ultrafilter on ω .

Definition (Baumgartner, 1995)

An ultrafilter p on ω is *nowhere dense* (nwd) if for any $f: \omega \to 2^{\omega}$ there is $A \in p$ such that $f[A] \in nwd(2^{\omega})$.

• (Baumgartner, 1995) Every P-point is a nwd-ultrafilter.

Theorem (Błaszczyk-Shelah, 2001)

The following are equivalent.

There is a nwd-ultrafilter on ω .

 There is a non-trivial σ-centered forcing notion which does not add Cohen reals.

Theorem (Shelah,1998)

It is consistent with ZFC that there is no nwd-ultrafilter on ω .

(4月) ト イヨト イヨト

Definition (Baumgartner, 1995)

An ultrafilter p on ω is *nowhere dense* (nwd) if for any $f: \omega \to 2^{\omega}$ there is $A \in p$ such that $f[A] \in nwd(2^{\omega})$.

• (Baumgartner, 1995) Every P-point is a nwd-ultrafilter.

Theorem (Błaszczyk-Shelah, 2001)

The following are equivalent.

- There is a nwd-ultrafilter on ω .
- There is a non-trivial σ-centered forcing notion which does not add Cohen reals.

Theorem (Shelah,1998)

It is consistent with ZFC that there is no nwd-ultrafilter on ω .

4 E F

Definition (Baumgartner, 1995)

An ultrafilter p on ω is *nowhere dense* (nwd) if for any $f: \omega \to 2^{\omega}$ there is $A \in p$ such that $f[A] \in nwd(2^{\omega})$.

• (Baumgartner, 1995) Every P-point is a nwd-ultrafilter.

Theorem (Błaszczyk-Shelah, 2001)

The following are equivalent.

- There is a nwd-ultrafilter on ω .
- There is a non-trivial σ-centered forcing notion which does not add Cohen reals.

Theorem (Shelah,1998)

It is consistent with ZFC that there is no nwd-ultrafilter on ω .

Definition (Baumgartner, 1995)

An ultrafilter p on ω is *nowhere dense* (nwd) if for any $f: \omega \to 2^{\omega}$ there is $A \in p$ such that $f[A] \in nwd(2^{\omega})$.

• (Baumgartner, 1995) Every P-point is a nwd-ultrafilter.

Theorem (Błaszczyk-Shelah, 2001)

The following are equivalent.

- There is a nwd-ultrafilter on ω .
- There is a non-trivial σ-centered forcing notion which does not add Cohen reals.

Theorem (Shelah,1998)

It is consistent with ZFC that there is no nwd-ultrafilter on ω .

Definition (Baumgartner, 1995)

An ultrafilter p on ω is *nowhere dense* (nwd) if for any $f: \omega \to 2^{\omega}$ there is $A \in p$ such that $f[A] \in nwd(2^{\omega})$.

• (Baumgartner, 1995) Every P-point is a nwd-ultrafilter.

Theorem (Błaszczyk-Shelah, 2001)

The following are equivalent.

- There is a nwd-ultrafilter on ω .
- There is a non-trivial σ-centered forcing notion which does not add Cohen reals.

Theorem (Shelah, 1998)

It is consistent with ZFC that there is no nwd-ultrafilter on ω .

The consistent examples for Arhangel'skii's question that we know satisfy the following property.

Fact

For every continuous function $f : \mathbb{G} \to 2^{\omega}$ there exists a non-empty open set U such that $f[U] \in nwd(2^{\omega})$.

Is this a mere accident?

Conjecture (Hrušák)

For every ED topological group \mathbb{G} and for every continuous function $f: \mathbb{G} \to 2^{\omega}$ there is an non-empty open set U such that $f[U] \in \mathsf{nwd}(2^{\omega})$.

The consistent examples for Arhangel'skii's question that we know satisfy the following property.

Fact

For every continuous function $f: \mathbb{G} \to 2^{\omega}$ there exists a non-empty open set U such that $f[U] \in nwd(2^{\omega})$.

Is this a mere accident?

Conjecture (Hrušák)

For every ED topological group \mathbb{G} and for every continuous function $f: \mathbb{G} \to 2^{\omega}$ there is an non-empty open set U such that $f[U] \in nwd(2^{\omega})$

The consistent examples for Arhangel'skii's question that we know satisfy the following property.

Fact

For every continuous function $f: \mathbb{G} \to 2^{\omega}$ there exists a non-empty open set U such that $f[U] \in nwd(2^{\omega})$.

Is this a mere accident?

Conjecture (Hrušák)

For every ED topological group \mathbb{G} and for every continuous function $f: \mathbb{G} \to 2^{\omega}$ there is an non-empty open set U such that $f[U] \in nwd(2^{\omega})$

The consistent examples for Arhangel'skii's question that we know satisfy the following property.

Fact

For every continuous function $f : \mathbb{G} \to 2^{\omega}$ there exists a non-empty open set U such that $f[U] \in nwd(2^{\omega})$.

Is this a mere accident?

Conjecture (Hrušák)

For every ED topological group \mathbb{G} and for every continuous function $f: \mathbb{G} \to 2^{\omega}$ there is an non-empty open set U such that $f[U] \in nwd(2^{\omega})$.

- 4 同 6 4 日 6 4 日 6

Theorem

Let \mathbb{G} be an ED countable Boolean topological group. If $f: \mathbb{G} \to 2^{\omega}$ is a continuous homomorphism, then there is a non-empty open set U such that $f[U] \in nwd(2^{\omega})$.

If Hrušák's conjecture is true, then the existence of a nondiscrete separable ED topological group implies the existence of a nwd-ultrafilter and thus, the existence of a nondiscrete separable ED topological group will be independent of ZFC.

A (10) A (10) A (10)

Theorem

Let \mathbb{G} be an ED countable Boolean topological group. If $f: \mathbb{G} \to 2^{\omega}$ is a continuous homomorphism, then there is a non-empty open set U such that $f[U] \in nwd(2^{\omega})$.

If Hrušák's conjecture is true, then the existence of a nondiscrete separable ED topological group implies the existence of a nwd-ultrafilter and thus, the existence of a nondiscrete separable ED topological group will be independent of ZFC.

- 4 同 6 4 日 6 4 日

Theorem

Let \mathbb{G} be an ED countable Boolean topological group. If $f: \mathbb{G} \to 2^{\omega}$ is a continuous homomorphism, then there is a non-empty open set U such that $f[U] \in nwd(2^{\omega})$.

If Hrušák's conjecture is true, then the existence of a nondiscrete separable ED topological group implies the existence of a nwd-ultrafilter and thus, the existence of a nondiscrete separable ED topological group will be independent of ZFC.

Theorem

Let \mathbb{G} be an ED countable Boolean topological group. If $f: \mathbb{G} \to 2^{\omega}$ is a continuous homomorphism, then there is a non-empty open set U such that $f[U] \in nwd(2^{\omega})$.

If Hrušák's conjecture is true, then the existence of a nondiscrete separable ED topological group implies the existence of a nwd-ultrafilter and thus, the existence of a nondiscrete separable ED topological group will be independent of ZFC.

Thank you!

U. A. Ramos-García (CCM-UNAM)

Extremal disconnectedness

▶ ◀ Ē ▶ Ē ∽ ে January 2014 17 / 17

<ロ> (日) (日) (日) (日) (日)